Skip Navigation
Skip to contents

JKSCT : Journal of The Korean Society of Clinical Toxicology

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Chang Yeon Ryu 2 Articles
The Effect of Glehnia Littoralis on Alpha-amanitin Induced Hepatotoxicity in a Murine Model
Chang Yeon Ryu, Kyung Hoon Sun, Ran Hong, Yongjin Park
J Korean Soc Clin Toxicol. 2018;16(2):108-115.   Published online December 31, 2018
DOI: https://doi.org/10.22537/jksct.2018.16.2.108
  • 171 View
  • 1 Download
AbstractAbstract PDF
Purpose: Glehnia littoralis has been reported to have several pharmacological properties but no in vivo reports describing the protective effects of this plant on${alpha}$-amanitin-induced hepatotoxicity have been published. ${alpha}$-Amanitin is a peptide found in several mushroom species that accounts for the majority of severe mushroom poisonings leading to severe hepatonecrosis. In our previous in vitro study, we found that ${alpha}$-amanitin induced oxidative stress, which may contribute to its severe hepatotoxicity. The aim of this study was to investigate whether Glehnia littoralis acetate extract (GLEA) has protective antioxidant effects on ${alpha}$-amanitin-induced hepatotoxicity in a murine model. Methods: Swiss mice (n=40 in all groups) were divided into four groups (n=10/group). Three hours after giving ${alpha}$-amanitin (0.6 mg/kg, i.p.) to the mice, they were administered silibinin (50 mg/kg/d, i.p.) or Glehnia littoralis ethyl acetate extract (100 mg/kg/d, oral) therapies once a day for 3 days. After 72 hours of treatment, each subject was killed, cardiac blood was aspirated for hepatic aminotransferase measurement, and liver specimens were harvested to evaluate the extent of hepatonecrosis. The degree of hepatonecrosis was assessed by a pathologist blinded to the treatment group and divided into 4 categories according to the grade of hepatonecrosis. Results: GLEA significantly improved the beneficial functional parameters in ${alpha}$-amanitin-induced hepatotoxicity. In the histopathological evaluation, the toxicity that was generated with ${alpha}$-amanitin was significantly reduced by GLEA, showing a possible hepatoprotective effect. Conclusion: In this murine model, Glehnia littoralis was effective in limiting hepatic injury after ${alpha}$-amanitin poisoning. Increases of aminotransferases and degrees of hepatonecrosis were attenuated by this antidotal therapy.
A Case of a Herbicide Poisoning Induced Methemoglobinemia Patient Treated with High-dose Vitamin C
Kyung Hoon Sun, Jun Kew Kim, Chang Yeon Ryu, Seo Jin Kim, Hyeon Kyu Jo, Tae Ho Yoo, Yong Jin Park, Sun pyo Kim
J Korean Soc Clin Toxicol. 2017;15(2):148-151.   Published online December 31, 2017
DOI: https://doi.org/10.22537/jksct.2017.15.2.148
  • 198 View
  • 3 Download
AbstractAbstract PDF
Methemoglobinemia is a condition in which the iron portion of hemoglobin, which binds to oxygen, is oxidized to produce methemoglobin, which increases blood concentration. There are many causes of methemoglobinemia, the most common being food, drugs, and chemicals. A 75-year-old male patient who had taken an herbicide did not notice any nonspecific symptoms. However, after 4 hours, his methemoglobin levels increased to 17.1%, while after 7 hours it increased to 26.5%, at which time intravenous administration of methylene blue 1 mg/kg (an antidote) was started. After a total of five doses of methylene blue at 1 mg/kg due to reactive methemoglobinemia for about 36 hours, the methemoglobin levels increased to 23.7%. Because no more methylene blue could be administered, 10 g of ascorbic acid (vitamin C) was administered intravenously. After 82 hours, ascorbic acid 10 g was administered six times for repeated reactive methemoglobinemia. No additional reactive methemoglobinemia was observed. The ventilator and endotracheal tube were successfully removed on day 5 after admission.

JKSCT : Journal of The Korean Society of Clinical Toxicology