Purpose: Green tea is known as a potent anti-oxidant, anti-carcinogen, and genetic protector. Glyphosate (N-phosphonomethyl glycine) is a widely used non-selective herbicide that causes DNA damage. The present study was conducted to investigate the protective effects of green tea in human blood lymphocytes exposed to glyphosate using the Sister Chromatid Exchange (SCE) frequency method. Methods: Peripheral blood was obtained from 10 volunteers and cultured through four different conditions. Four groups were divided into control, glyphosate only (300 ng/mL), glyphosate and low ($20{mu}m$) concentrations of epigallocatechin gallate (EGCG) and glyphosate and high ($100{mu}m$) concentrations of EGCG. Results: The glyphosate exposed groups had a higher mean SCE frequency ($10.33{pm}2.50$) than the control group ($6.38{pm}2.28$, p<0.001). The low concentrations of EGCG groups had a lower mean SCE frequency ($9.91{pm}1.93$) than the glyphosate-only group, although this difference was not significant (p=0.219). However, the high concentration group ($9.49{pm}1.85$) had a significantly lower SCE frequency than the glyphosate-only group (p=0.001). Conclusion: EGCG has a gene protective effect in human lymphocytes exposed to the genotoxicity of glyphosate in the case of high concentrations.
Purpose: Glyphosate is a widely used non-selective herbicide. Previous studies have shown that glyphosate has genotoxicity, and that even low-doses of glyphosate can cause DNA damage. Melatonin is a hormone produced and secreted by the pineal gland that is known to be a potent anti-carcinogen, anti-oxidant, and genetic protector. This study was conducted to investigate the genoprotective effect of melatonin against glyphosate in human blood lymphocytes. Methods: Human peripheral blood was obtained from 15 young, healthy volunteers and cultured under four different toxicologic conditions. The four groups consisted of a control group, glyphosate only group (300 ng/mL), glyphosate with low level of melatonin group ($50{mu}M$), and glyphosate with high level of melatonin group ($200{mu}M$). The mean Sister Chromatid Exchange (SCE) frequency of each group was then analyzed. Results: Glyphosate exposed groups had a higher mean SCE frequency ($10.33{pm}2.50$) than the control group ($6.78{pm}2.31$, p<0.001). Interestingly, the group that received a low-level of melatonin had a lower mean SCE frequency ($8.67{pm}2.58$) than the glyphosate-only group, while the group that received a high level of melatonin had a much lower mean SCE frequency ($8.06{pm}2.50$) than the glyphosate-only group. There was statistical significance. Conclusion: Melatonin exerted a potent gene protective effect against the genotoxicity of glyphosate on human blood lymphocytes in a dose-dependent fashion.
Purpose: Glyphosate (N-phosphonomethyl glycine) is widely used as an herbicide for weed control in rural areas. It is also readily available for suicide attempts. Glyphosate has high toxicity and negatively affects the human body. The aim of this investigation was to study the genotoxicity of a low-concentration of glyphosate through sister chromatid exchange (SCE) in human blood lymphocytes in vitro. Methods: Primary lymphocyte cultures were obtained from blood samples of 11 males and seven females who had been exposed to glyphosate (0, 100, 200, and 300 ng/mL). The frequency of SCEs was examined and statistical analysis was performed. Results: All doses of glyphosate induced a significant dose-dependent increase in SCE frequency compared with the control group (P<0.001). In particular, the SCE frequency for exposure to low-dose glyphosate was significantly higher in females than in males. Conclusion: According to the result of this study, even a low-dose of glyphosate may damage DNA and females are more vulnerable to glyphosate.